不过,经典分子动力学采用分子系统的简化表示,实现长时间构象变化的快速模拟速度,但准确性较低。相比之下,像密度泛函理论这样的量子力学模型提供了自下而上的计算,但对于大生物分子来说,计算成本过高。
西风 发自 凹非寺量子位 | 公众号 QbitAI 历时四年,微软亚研院AI for Science团队发布AI驱动的从头算(ab initio)生物分子动力学模拟系统。 直接登上Nature正刊。
最近,微软研究院开发的AI²BMD登上了Nature。这是生物分子动力学(MD)模拟中,继经典MD和量子力学之后,首个成功地兼顾了模拟效率和精度的开创性方法!AlphaFold之后,AI在生化科学领域带来的革新仍在继续。