机器之心报道机器之心编辑部昨天,The Information 的一篇文章让 AI 社区炸了锅。这篇文章透露,OpenAI 下一代旗舰模型的质量提升幅度不及前两款旗舰模型之间的质量提升,因为高质量文本和其他数据的供应量正在减少,原本的 Scaling ...
Scaling Law并未失效,只是不再局限于参数规模的增加。MIT团队最新研究发现,测试时训练在Scaling大模型上,显现出突破性潜力,ARC公共基准测试中拿下61.9%成绩,媲美人类选手。
这篇文章透露,OpenAI 下一代旗舰模型的质量提升幅度不及前两款旗舰模型之间的质量提升,因为高质量文本和其他数据的供应量正在减少,原本的 Scaling Law(用更多的数据训练更大的模型)可能无以为继。 昨天,The Information ...
OpenAI o1团队成员 Noam Brown 表示,o1的大规模计算可能不是最好的方法,很高兴看到有学者在提高推理能力上探索新的方法。 数据生成 的核心是将测试任务中蕴含的输入输出对关系,通过数据增强的方式最大限度地利用,可具体分为两个步骤。